The Crystal Structure on the Set of Mirković-vilonen Polytopes

نویسنده

  • JOEL KAMNITZER
چکیده

In an earlier work, we proved that MV polytopes parameterize both Lusztig’s canonical basis and the Mirković-Vilonen cycles on the Affine Grassmannian. Each of these sets has a crystal structure (due to Kashiwara-Lusztig on the canonical basis side and due to Braverman-Finkelberg-Gaitsgory on the MV cycles side). We show that these two crystal structures agree. As an application, we consider a conjecture of AndersonMirković which describes the BFG crystal structure on the level of MV polytopes. We prove their conjecture for SLn and give a counterexample for Sp6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Mirković-vilonen Cycles and Crystal Combinatorics

Let G be a complex connected reductive group and let G∨ be its Langlands dual. Let us choose a triangular decomposition n−,∨⊕h∨⊕n+,∨ of the Lie algebra of G∨. Braverman, Finkelberg and Gaitsgory show that the set of all Mirković-Vilonen cycles in the affine Grassmannian G ( C((t)) ) /G ( C[[t]] ) is a crystal isomorphic to the crystal of the canonical basis of U(n+,∨). Starting from the string ...

متن کامل

Rank 2 Affine Mv Polytopes

We give a realization of the crystal B(−∞) for ̂ sl2 using decorated polygons. The construction and proof are combinatorial, making use of Kashiwara and Saito’s characterization of B(−∞), in terms of the ∗ involution. The polygons we use have combinatorial properties suggesting they are the ̂ sl2 analogues of the Mirković-Vilonen polytopes defined by Anderson and the third author in finite type. ...

متن کامل

Mirković-Vilonen Cycles and Polytopes in Type A

Let G be a connected complex algebraic reductive group. The loop Grassmannian G for G is the quotient G(K)/G(O), where O = C[[t]] is the ring of formal power series and K = C((t)) is its field of fractions, the ring of formal Laurent series. The same set is obtained using polynomials instead of power series: G = G(C[t, t])/G(C[t]). The loop Grassmannian G may be realized as an increasing union ...

متن کامل

Mirkovic-vilonen Cycles and Polytopes

We give an explicit description of the Mirkovic-Vilonen cycles on the affine Grassmannian for arbitrary reductive groups. We also give a combinatorial characterization of the MV polytopes. We prove that a polytope is an MV polytope if and only if every 2-face of it is a rank 2 MV polytope.

متن کامل

The Algebra of Mirković-vilonen Cycles in Type a Jared Anderson and Mikhail Kogan

Let Gr be the affine Grassmannian for a connected complex reductive group G. Let CG be the complex vector space spanned by (equivalence classes of) Mirković-Vilonen cycles in Gr. The Beilinson-Drinfeld Grassmannian can be used to define a convolution product on MV-cycles, making CG into a commutative algebra. We show, in type A, that CG is isomorphic to C[N], the algebra of functions on the uni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008